top of page
Search

The Four Fundamental Forces

Updated: Apr 6, 2021

The strong nuclear force - The Strong Nuclear Force (also referred to as the strong force) is one of the four basic forces in nature (the others being gravity, the electromagnetic force, and the weak nuclear force). As its name implies, it is the strongest of the four. However, it also has the shortest range, meaning that particles must be extremely close before its effects are felt. Its main job is to hold together the subatomic particles of the nucleus (protons, which carry a positive charge, and neutrons, which carry no charge. These particles are collectively called nucleons). As most people learn in their science education, like charges repel (+ +, or - -), and unlike charges attract (+ -).


If you consider that the nucleus of all atoms except hydrogen contain more than one proton, and each proton carries a positive charge, then why would the nuclei of these atoms stay together? The protons must feel a repulsive force from the other neighbouring protons. This is where the strong nuclear force comes in. The strong nuclear force is created between nucleons by the exchange of particles called mesons. This exchange can be likened to constantly hitting a ping-pong ball or a tennis ball back and forth between two people. As long as this meson exchange can happen, the strong force is able to hold the participating nucleons together. The nucleons must be extremely close together in order for this exchange to happen. The distance required is about the diameter of a proton or a neutron. If a proton or neutron can get closer than this distance to another nucleon, the exchange of mesons can occur, and the particles will stick to each other. If they can't get that close, the strong force is too weak to make them stick together, and other competing forces (usually the electromagnetic force) can influence the particles to move apart. This is represented in the following graphic. The dotted line surrounding the nucleon being approached represents any electrostatic repulsion that might be present due to the charges of the nucleons/particles that are involved. A particle must be able to cross this barrier in order for the strong force to "glue" the particles together.


In the case of approaching protons/nuclei, the closer they get, the more they feel the repulsion from the other proton/nucleus (the electromagnetic force). As a result, in order to get two protons/nuclei close enough to begin exchanging mesons, they must be moving extremely fast (which means the temperature must be really high), and/or they must be under immense pressure so that they are forced to get close enough to allow the exchange of meson to create the strong force. Now, back to the nucleus. One thing that helps reduce the repulsion between protons within a nucleus is the presence of any neutrons. Since they have no charge they don't add to the repulsion already present, and they help separate the protons from each other so they don't feel as strong a repulsive force from any other nearby protons. Also, the neutrons are a source of more strong force for the nucleus since they participate in the meson exchange. These factors, coupled with the tight packing of protons in the nucleus so that they can exchange mesons creates enough strong force to overcome their mutual repulsion and force the nucleons to stay bound together. The preceding explanation shows the reason why it is easier to bombard a nucleus with neutrons than with protons. Since the neutrons have no charge, as they approach a positively charged nucleus they will not feel any repulsion. They therefore can easily "break" the electrostatic repulsion barrier to being exchanging mesons with the nucleus, thus becoming incorporated into it.

 


The weak force - Weak interaction, also called weak force or weak nuclear force, a fundamental force of nature that underlies some forms of radioactivity, governs the decay of unstable subatomic particles such as mesons, and initiates the nuclear fusion reaction that fuels the Sun. The weak interaction acts upon left-handed fermions—i.e., elementary particles with half-integer values of intrinsic angular momentum, or spin—and right-handed antifermions. In beta plus decay(an example of decay in weak interaction) an up quark changes into down quark with the emission of a positron and a neutrino, while in beta minus decay a down quark changes into a up quark with the emission of an electron and an anti-neutrino. The quarks are held together in the nucleus by the strong nuclear force. Particles interact through the weak interaction by exchanging force-carrier particles known as the W and Z particles. These particles are heavy, with masses about 100 times the mass of a proton, and it is their heaviness that defines the extremely short-range nature of the weak interaction and that makes the weak interaction appear weak at the low energies associated with radioactivity. But , the weak force requires two conditions -

1) The two nucleons(protons and neutrons associated in the decay) should be in the close range of 10−17 metre.


2) The up quark which decays into down quark should absorb enough energy from the quantum fluctuation (the region whose energy amount cannot be determined In quantum physics, a quantum fluctuation (or vacuum state fluctuation or vacuum fluctuation) is the temporary random change in the amount of energy in a point in space, as prescribed by Werner Heisenberg's uncertainty principle). Unlike the other massless bosons (gravitons, photons, gluons) the W and Z bosons have quite a big mass. Therefore they can exist only for a very short time (≈10−25≈10−25 s), and hence the weak interaction is very short-ranged (≈10−17≈10−17 m). This also means that the weak interaction has a quantum model only, but there is no classical model for it. https://www.youtube.com/watch?v=cnL_nwmCLpY



Gravity - The one and only GRAVITY. Gravity is the attraction between two objects that have mass or energy, whether this is seen in dropping a rock from a bridge, a planet orbiting a star or the moon causing ocean tides. Gravity is probably the most intuitive and familiar of the fundamental forces, but it's also been one of the most challenging to explain.


Isaac Newton was the first to propose the idea of gravity, supposedly inspired by an apple falling from a tree. He described gravity as a literal attraction between two objects. Centuries later, Albert Einstein suggested, through his theory of general relativity, that gravity is not an attraction or a force. Instead, it's a consequence of objects bending space-time. A large object works on space-time a bit like how a large ball placed in the middle of a sheet affects that material, deforming it and causing other, smaller objects on the sheet to fall toward the middle.


Though gravity holds planets, stars, solar systems and even galaxies together, it turns out to be the weakest of the fundamental forces, especially at the molecular and atomic scales. Think of it this way: How hard is it to lift a ball off the ground? Or to lift your foot? Or to jump? All of those actions are counteracting the gravity of the entire Earth. And at the molecular and atomic levels, gravity has almost no effect relative to the other fundamental forces.


Electromagnetism - Electromagnetism is a branch of physics involving the study of the electromagnetic force, a type of physical interaction that occurs between electrically charged particles. The electromagnetic force is carried by electromagnetic fields composed of electric fields and magnetic fields, and it is responsible for electromagnetic radiation such as light. It is one of the four fundamental interactions (commonly called forces) in nature, together with the strong interaction, the weak interaction, and gravitation. At high energy the weak force and electromagnetic force are unified as a single electroweak force. The electromagnetic force, also called the Lorentz force, explains how both moving and stationary charged particles interact. It's called the electromagnetic force because it includes the formerly distinct electric force and the magnetic force; magnetic forces and electric forces are really the same fundamental force. The electromagnetic force is one of the four fundamental forces.


The electric force acts between all charged particles, whether or not they're moving. The magnetic force acts between moving charged particles. This means that every charged particle gives off an electric field, whether or not it's moving. Moving charged particles (like those in electric current) give off magnetic fields. Einstein developed his theory of relativity from the idea that if the observer moves with the charged particles, magnetic fields transform into electric fields and vice versa! One special case of the electromagnetic force, when all the charges are point charges (or can be broken up into point charges), is Coulomb's law.



17 views0 comments

Recent Posts

See All
Post: Blog2_Post
Space Supernova
bottom of page